BackgroundThe British Gynaecological Cancer Society (BGCS) has highlighted the disparity of ovarian cancer outcomes in the UK compared to other European countries. Therefore, cancer quality assurance audits and subspecialty training are important in improving the UK standard of care for these patients. The current workforce crisis afflicting the NHS creates difficulty in dedicating teams of clinicians to these audits. We present a single institution study to evaluate if NLP-generated code can improve the efficiency of ovarian cancer and subspeciality reaccreditations audits. We used the chat bot Google Bard to write Visual Basic Applications algorithms that utilise Excel files from electronic health records. MethodsPrimary ovarian cancer data from 2019 to 2022 was retrospectively collected from the Cambridge University Hospital electronic health records. The surgical subspecialty reaccreditation audit analysed the 2022 surgical database. A modular coding approach with Google Bard was applied to generate audit algorithms. The time to complete these current audits was compared against the 2016 ovarian cancer and 2020 subspeciality reaccreditation audits. ResultsThe previous ovarian cancer audit conducted in 2016 required 3 clinicians for the 135 cases and data collection required 1800 min. Data analysis was completed in 300 min. The current ovarian cancer audit allocated 2 clinicians to the 600 surgical cases. Data collection was completed in 3120 min, 3360 min for code development and 720 min for testing. The 2020 subspecialty reaccreditation audit was completed in 360 min. The 2022 subspecialty reaccreditation audit was completed in 1680 min, with 960 min for code development, 240 for debugging and 480 min for testing. ConclusionWe have demonstrated that NLP-generated code can significantly increase the efficiency of surgical quality assurance audits by eliminating the need for manual data analysis. With the current trajectory of NLP development, increasingly complex algorithms can be developed with minimal programming knowledge.
Read full abstract