AbstractThe Frontal Cordillera is a first‐order geologic feature of the southern central Andes, hosting the highest hinterland topography above the modern Pampean flat‐slab segment. The timing of Frontal Cordillera exhumation is important for testing models of Andean tectonics, yet large latitudinal gaps exist between structural and thermochronological constraints for the region. We conducted a thermochronometric study using a 4.4 km age‐elevation transect along the northeast ridge of Cerro Mercedario, the highest peak in the La Ramada massif at ∼32°S. Zircon (U‐Th)/He dates indicate partial resetting, supporting a limited magnitude of exhumation in even the most extreme Andean topography. Single grain apatite (U‐Th‐Sm)/He dates range from 8.5 ± 0.9 to 35.8 ± 3.6 Ma, with median dates of ∼10.5 to ∼15.7 Ma with increasing elevation. Integrated with geologic mapping and thermal history modeling, these data suggest Early to Middle Miocene exhumation along the Santa Cruz and Espinacito faults concomitant with uplift of the La Ramada massif. New apatite helium data from the Cordillera del Tigre segment of the Frontal Cordillera are partially reset and preferred modeling interpretations suggest exhumation ca. 11–9 Ma, coeval with shortening in the eastward adjacent Precordillera. These data add to accumulating regional evidence for out‐of‐sequence deformation during the Miocene, consistent with internal (hinterland) growth of a subcritical orogenic wedge contemporaneous with surface uplift and crustal thickening in the south‐central Andes.
Read full abstract