Measurements of {sup 10}Be in precipitation taken in Hawaii, Illinois and New Jersey over a period of five years are reported. The problem of contamination by the isotope being resuspended on wind blown soil that is also collected is addressed. Rain collected at Mauna Loa, Hawaii has such low values of dust contamination that it has been taken as clean, and the data from Illinois and New Jersey are evaluated on that assumption. The conclusion is that the deposition in a given amount of rain for the non-resuspended component is the same for all three stations, and the authors propose that the annual rate for mid-latitude locations have moderate rainfall is proportional to the local rainfall. {sup 7}Be, which is probably negligibly contributed to the measurements by soil contamination was measured for individual rains in Illinois and found to have a deposition of 1.4 {times} 10{sup 4} atom/cm{sup 3}. The authors have found that concentration variations between precipitation events greater than a factor of 20 exist for both isotopes and that relatively rare, high concentration events dominate deposition, thereby requiring long periods of observation to avoid significant error. Based on their own and other data they conclude that the bestmore » value for {sup 10}Be deposition is 1.5 {times} 10{sup 4} atom/cm{sup 3}, uncertain by 20%, and for {sup 7}Be is 1.2 {times} 10{sup 4} atom/cm{sup 3}, uncertain by 25%. A global average deposition rate cannot be inferred directly for either isotope from these kinds of data; however, the theoretical global deposition rate for {sup 10}Be is shown to be consistent with the deposition reported here, if the concentration in equatorial rain is about 3300 atom/g.« less