Abstract

It is proposed that dust storms on Mars that develop during predawn hours may be triggered by a freeze/thaw dust injection process. The model is based on a phenomenon that was observed during the Viking Gas Exchange experiments on Mars, in which adsorbed gas was catastrophically desorbed from soil samples when exposed to humidification at ∼5°C. Similar conditions may develop at midlatitude locations on Mars near perihelion, and a similar humidification-driven desorption process might occur in the soil column. If soils are dampened during humikification, desorbed gases in confined pore spaces could possibly reach 8.6 bar. Diurnal freezing may possibly cause H 2O to crystallize within the pores, possibly producing cohesive soil failure, release of the trapped gas, and explosive injection of freeze-dried powdery overburden dust into the atmospheric column. The process could potentially occur at 5–20 cm depth, and the freeze/thaw dust injection event may initiate after 10:00 PM local time (20°S lat). Dust would be injected at velocities approaching 450 m sec −1 and it would remain in the atmosphere for several hours before settling out. The plumes could potentially regenerate diurnally until the growing atmospheric dust load produced sufficient dampening of the diurnal thermal wave to prevent freeze/thaw. Seasonal replenishment of H 2O could potentially occur by upward migration from depth during the period between 150 and 475 sols after perihelion. The model was experimentally tested and the results were in good agreement with predictions, although a factor of 14 times more gas evolved from the laboratory samples than from the Viking samples. Most of the characteristics of the predawn storms could possibly be adequately explained by the freeze/thaw injection model, including (1) predawn onsets, (2) postperihelion seasonal occurence, (3) daily recurrence during the initial phases of the storms, and (4) generation of blue clouds (H 2O ice) at the storm sites. The process may possibly occur over widespread locations at midlatitudes during seasonal retreat of “tempofrost” from these latitude belts. Permanent low albedo features in these latitude belts may possibly be regions of preferential humidification-induced dust entrainment and net dust removal. The H 2O injected into the atmosphere may potentially be a major source of H 2SO 4 and HCl aerosols, which may possibly chemically react with the regolith to form soluble sulfate and chloride salts. Mg 2+ may be preferentially depleted from the dust.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.