Applications in security and electronic surveillance require a combination of excellent magnetic softness with good mechanical and anticorrosive properties and low dimensionality. We overviewed the feasibility of using glass-coated microwires for electronic article surveillance and security applications, as well as different routes of tuning the magnetic properties of individual microwires or microwire arrays, making them quite attractive for electronic article surveillance and security applications. We provide the routes for tuning the hysteresis loops’ nonlinearity by the magnetostatic interaction between the microwires in the arrays of different types of amorphous microwires. The presence of neighboring microwire (either Fe- or Co-based) significantly affects the hysteresis loop of the whole microwires array. In a microwires array containing magnetically bistable microwires, we observed splitting of the initially rectangular hysteresis loop with a number of Barkhausen jumps correlated with the number of magnetically bistable microwires. Essentially, nonlinear and irregular hysteresis loops have been observed in mixed arrays containing Fe- and Co-rich microwires. The obtained nonlinearity in hysteresis loops allowed to increase the harmonics and tune their magnetic field dependencies. On the other hand, several routes allowing to tune the switching field by either postprocessing or modifying the magnetoelastic anisotropy have been reviewed. Nonlinear hysteresis loops have been also observed upon devitrification of amorphous microwires. Semihard magnetic microwires have been obtained by annealing of Fe–Pt–Si microwires. The observed unique combination of magnetic properties together with thin dimensions and excellent mechanical and anticorrosive properties provide excellent perspectives for the use of glass-coated microwires for security and electronic surveillance applications.
Read full abstract