Dental microwear texture analysis (DMTA) is widely applied for inferring diet in vertebrates. Besides diet and ingesta properties, factors like wear stage and bite force may affect microwear formation, potentially leading to tooth position-specific microwear patterns. We investigated DMTA consistency along the upper cheek tooth row in young adult female rats at different growth stages, but with erupted adult dentitions. Bite forces for each molar (M) position were determined using muscle cross-sectional areas and lever arm mechanics. Rats were categorized into three size classes based on increasing skull length. Maximum bite force increased with size, while across all size classes, M3 bite force was almost 1.4 times higher than M1 bite force. In size class 1, M1 and M2 showed higher values than M3 for DMTA complexity, height, and volume parameters, while in size class 3, M1 had the lowest values. Comparing the same tooth position between size classes revealed opposing trends: M1 and M2 showed, for most parameters, decreasing roughness and complexity from size class 1-3, while M3 displayed the opposite trend, with size class 1 showing lowest, and either size class 2 or 3 the highest roughness and complexity values. This suggests that as rats age and M3 fully occludes, it becomes more utilized during mastication. DMTA, being a short-term diet proxy, is influenced by eruption and occlusion status changes. Our findings emphasize the importance of bite force and ontogenetic stage when interpreting microwear patterns and advise to select teeth in full occlusion for diet reconstruction.