Conventional microwave imaging schemes, enabled by the ubiquity of coherent sources and detectors, have traditionally relied on frequency bandwidth to retrieve range information, while using mechanical or electronic beamsteering to obtain cross-range information. This approach has resulted in complex and expensive hardware when extended to large-scale systems requiring ultrawide bandwidth. Relying on bandwidth can create difficulties in calibration, alignment, and imaging of dispersive objects. We present an alternative approach using an electrically-large, dynamically reconfigurable, metasurface antenna that generates spatially-distinct radiation patterns as a function of tuning state. The metasurface antenna comprises a waveguide feeding an array of metamaterial radiators, each of whose properties can be modified by applying a voltage to a diode integrated into the element. By deploying two of these apertures, one as the transmitter and one as the receiver, we realize sufficient spatial diversity to alleviate the dependence on frequency bandwidth and obtain both range and cross-range information using measurements at a single frequency. We demonstrate the method experimentally, using one-dimensional dynamic metasurface apertures and reconstructing various two-dimensional scenes (range and cross-range). Furthermore, we modify a conventional microwave imaging technique---the range migration algorithm---to be compatible with such configurations, resulting in an imaging system that is fast and simple in both software and hardware. The imaging scheme presented in this paper has broad application to radio frequency imaging, including security screening, through-wall imaging, biomedical diagnostics, and synthetic aperture radar.
Read full abstract