The EYA1 gene is essential for normal inner ear development and affects the development and function of the inner ear in a dose-dependent manner. However, the mechanisms regulating EYA1 gene expression are not well understood. Recently, miRNAs have become recognized as important regulators of gene expression. In this study, we identified miR-124-3p through a microRNA (miRNA) target prediction website and found that miR-124-3p and its target site in the EYA1 3′ untranslated region (3′UTR) are conserved in most vertebrates. Both in vivo and in vitro, the interaction of miR-124-3p with the EYA1 3′UTR exerts a negative regulatory effect. Microinjection of agomiR-124-3p into zebrafish embryos resulted in a phenotype of reduced auricular area, suggesting inner ear dysplasia. In addition, injection of agomiR-124-3p or antagomiR-124-3p caused abnormal hearing function in zebrafish. In conclusion, our results suggest that miR-124-3p can affect inner ear development and hearing function in zebrafish by regulating EYA1.