The results of stress analysis of a ceramic matrix composite (CMC) vane using a physics-based model developed for two-dimensional woven CMCs are presented. The model considers the inherent defects and micromechanical damage in woven CMCs along with time-dependent deformation of the constituents. Predictions include damage state under general load conditions and the global deformation response of the vane. Strain-gage data from burst tests are compared to strain predictions obtained using the model. Results from time-dependent analysis and life prediction of the vane under constant loads and cyclic loads at elevated temperatures are presented. Effect of fatigue frequency on the deformation and long-term life of the vane are also discussed.
Read full abstract