Abstract

This paper presents a probabilistic first ply failure analysis of composite laminates using a high-fidelity multi-scale approach called M-SaF (Micromechanics-based approach for Static Failure). To this end, square and hexagonal representative unit cells of composites are developed to calculate constituent stresses with the help of a bridging matrix between macro and micro stresses referred to as the stress amplification factor matrix. Separate failure criteria are applied to each of the constituents (fiber, matrix, and interface) in order to calculate the damage state. The successful implementation of M-SaF requires strength properties of the constituents which are the most difficult and expensive to characterize experimentally, limiting the use of M-SaF in the early design stages of a structure. This obstacle is overcome by integrating a Bayesian inference approach with M-SaF. An academic sample problem of a cantilever beam is used to first demonstrate the calibration procedure. Bayesian inference calibrates the M-SaF first ply failure model parameters as posterior distributions from the prior probability density functions drawn from lamina test data. The posterior statistics were then used to calculate probabilistic first ply failure for a range of different laminates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.