We present a new temperature compensation system for microresonator-based frequency references. It consists of a phase-locked loop (PLL) whose inputs are derived from two microresonators with different temperature coefficients of frequency. The resonators are suspended within an encapsulated cavity and are heated to a constant temperature by the PLL controller, thereby achieving active temperature compensation. We show repeated real-time measurements of three 1.2-MHz prototypes that achieve a frequency stability of ± 1 ppm from -20°C to +80°C, as well as a technique to reduce steady-state frequency errors to ±0.05 ppm using multipoint calibration.
Read full abstract