Excessive sulfate levels in water bodies pose a dual threat to the ecological environment and human health. The microbial removal of sulfate encounters challenges, particularly in environments with high sulfate concentrations, where the gradual accumulation of sulfide hampers microbial activity. This study focuses on elucidating the mechanisms underlying the enhancement of microbial sulfate reduction in high-concentration sulfate wastewater through a comparative analysis of maifanite and zeolite biostimulants. The investigation reveals that zeolite primarily facilitates microbial growth by providing attachment sites, while maifanite augments sulfate-reducing bacteria (SRB) activity through the release of active substances such as Mo, Ca, and Cu. The addition of maifanite proves instrumental in enhancing microbial activity, manifesting as increased microbial load and protein production, augmented extracellular polymer generation, accelerated electron transfer, and facilitated microbial growth and biofilm formation. Noteworthy is the observation that the combined application of maifanite and zeolite exhibited a synergistic effect, resulting in a 167 % and 68 % increase in sulfate reduction rate compared to the utilization of maifanite (0.12 d−1) or zeolite (0.19 d−1) in isolation. Within this synergistic context, the relative abundance of Desulfobacteraceae reaches a peak of 15.4 %. The outcomes of this study corroborate the distinct promotion mechanisms of maifanite and zeolite in microbial sulfate reduction, offering novel insights into the application of maifanite in the context of high-concentration sulfate removal.