Epoxy-based coatings are widely used in engineering but are prone to degrade under aggressive environmental actions, especially in hygrothermal environments. However, the degradation mechanisms of a coating-substrate system under coupled UV irradiation and bulk water remain insufficiently explored. Herein, we designed three parallel accelerated aging tests, including UV irradiation only, UV/flush, and UV/submerged, on a waterborne epoxy resin (WER) coating on cement mortar substrate. The chemical structure, micro-morphology, and hydrophilicity over aging time were comprehensively characterized by the tests of attenuated total reflectance Fourier transformation infrared spectrometer (ATR-FTIR), scanning electron microscopy (SEM), image analysis, water contact angle (WCA). Results show that the UV/flush environments induced more micro-pinholes on the WER outer surface than the neat UV photooxidation. The UV/ submerged environment led to a blistering rate over 24% after 60 d's exposure owing to the significant osmotic pressure built between the inner and outer surfaces of the WER coating. Additionally, the physicochemical and microstructure changes to the outer surface of WER also caused the changes of WCA. The osmotic, hydrolysis, and thermal stresses were evaluated to clarify the water-accelerated photooxidation and interface degradation mechanisms. These findings contribute to a deeper understanding of epoxy coating degradation mechanisms in response to environmental stressors, and offer insights for enhancing coating performance under varying conditions.
Read full abstract