AbstractThe family of III-nitride materials has provided a platform for tremendous advances in efficient solid-state lighting sources such as light-emitting diodes and laser diodes. In particular, quantum dot (QD) lasers using the InGaN/GaN material system promise numerous benefits to enhance photonic performance in the blue wavelength regime. Nevertheless, issues of strained growth and difficulties in producing InGaN QDs with uniform composition and size pose daunting challenges in achieving an efficient blue laser. Through a review of two previous studies on InGaN/GaN QD microdisk lasers, we seek to provide a different perspective and approach in better understanding the potential of QD emitters. The lasers studied in this paper contain gain material where QDs are sparsely distributed, comprise a wide distribution of sizes, and are intermixed with “fragmented” quantum well (fQW) material. Despite these circumstances, the use of microdisk cavities, where a few distinct, high-quality modes overlap the gain region, not only produces ultralow lasing thresholds (∼6.2 μJ/cm2) but also allows us to analyze the dynamic competition between QDs and fQWs in determining the final lasing wavelength. These insights can facilitate “modal” optimization of QD lasing and ultimately help to broaden the use of III-nitride QDs in devices.