To corroborate the efficacy of Jintiange capsules (JTGs) in the treatment of osteoarthritis (OA) by exploring the potential mechanism of action of synovial mesenchymal stem cell exosomes (SMSC-Exos) and articular chondrocytes (ACs) through transcriptome sequencing (RNA-seq). Type II collagenase was used to induce OA in rats. The efficacy of JTGs was confirmed by macroscopic observation of articular cartilage, micro-CT observation, and safranin fast green staining. After SMSC-Exos and ACs were qualified, RNA-seq was used to screen differentially expressed miRNAs and mRNAs. The target genes of differentially expressed miRNAs in Synovial mesenchymal stem cells (SMSCs) were predicted based on the multiMiR R package. The co-differentially expressed genes of SMSC-Exos and ACs were obtained by venny 2.1.0. The miRNA-mRNA regulatory network was constructed by Cytoscape software. Based on the OmicShare platform, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis was performed on the mRNA regulated by key miRNAs. Expression trend analysis was performed for co-differentially expressed genes. Correlation analysis was performed on micro-CT efficacy indicators, co-differentially expressed genes mRNA and miRNA. The efficacy of each administration group of JTGs was significant compared with the model group. SMSC-Exos and ACs were identified by their characteristics. The expression of rno-miR-23a-3p, rno-miR-342-3p, rno-miR-146b-5p, rno-miR-501-3p, rno-miR-214-3p was down-regulated in OA pathological state, and the expression of rno-miR-222-3p, rno-miR-30e-3p, rno-miR-676, and rno-miR-192-5p expression was up-regulated, and the expression of all these miRNAs was reversed after the intervention with JTGs containing serum. The co-differentially expressed genes were enriched in the interleukin 17 signaling pathway, tumor necrosis factor signaling pathway, transforming growth factor-β signaling pathway, etc. The expression trends of Ccl7, Akap12, Grem2, Egln3, Arhgdib, Ccl20, Mmp12, Pla2g2a, and Nr4a1 were significant. There was a correlation between micro-CT pharmacodynamic index, mRNA, and miRNA. JTGs can improve the degeneration of joint cartilage and achieve the purpose of cartilage protection, which can be used for the treatment of OA. SMSCs-related miRNA expression profiles were significantly altered after the intervention with JTGs containing serum. The 9 co-differentially expressed genes may be the key targets for the efficacy of JTGs in the treatment of OA rats, which can be used for subsequent validation.
Read full abstract