We explore the semi-classical relation between the fuzzy 4-hyperboloid HN4\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {H}_N^4 $$\\end{document} and non-compact quantized twistor space ℙN1,2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {\\mathbb{P}}_N^{1,2} $$\\end{document} at large N. This provides two backgrounds of the IKKT matrix model via two natural stereographic projections, leading to higher-spin gauge theories with Euclidean and Minkowski signature denoted by HS-IKKT. The resulting higher-spin gauge theory can be understood as an uplift of N\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{N} $$\\end{document} = 4 super Yang-Mills to twistor space. The action of HS-IKKT is written using a spinor formalism in both in Euclidean and Minkowski signature. We then compute the tree-level amplitudes of the massless sector within the Yang-Mills part of the HS-IKKT model in the flat limit in Euclidean signature. All n-point tree-level scattering amplitudes for n ≥ 4 of this sector are found to vanish in the flat limit.
Read full abstract