Abstract
We construct higher-order curvature invariants in causal set quantum gravity. The motivation for this work is twofold: First, to characterize causal sets, discrete operators that encode geometric information on the emergent spacetime manifold, e.g., its curvature invariants, are indispensable. Second, to make contact with the asymptotic-safety approach to quantum gravity in Lorentzian signature and find a second-order phase transition in the phase diagram for causal sets, going beyond the discrete analog of the Einstein–Hilbert action may be critical. Therefore, we generalize the discrete d’Alembertian, which encodes the Ricci scalar, to higher orders. We prove that curvature invariants of the form R^{2} -2 Box R (and similar invariants at higher powers of derivatives) arise in the continuum limit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.