A high-purity sample of methyl phenyl carbonate (MPC) was obtained by developing a novel reaction route followed by a series of separation and purification procedures. Identification and quantification of the MPC sample (98.32%) was performed by a gas chromatography-mass spectrometry and Karl Fisher titration. The laboratory-prepared MPC was then used as a standard to optimize quantitative analysis of the products synthesized by transesterification of dimethyl carbonate and phenol. The advantage of the improved method was that MPC can be quantified directly rather than being calculated by subtracting the yield of diphenyl carbonate (DPC) and by-product anisole from the conversion of dimethyl carbonate (DMC). The resulting method was validated for linearity, precision, accuracy, detection limit, and quantification limit. With the improved method, simultaneous accurate quantification of DMC, MPC, DPC, phenol, and anisole in the transesterification products can be achieved. This enables evaluation of the activity and selectivity of different catalysts and control of the reaction processes.