Abstract

The transesterification of dimethylcarbonate and phenol has been studied in a continuous gas flow reactor at high temperatures which were found to be favorable thermodynamically for high yields of methylphenylcarbonate (MPC). Among various solid catalysts, TiO2/SiO2 showed the highest activity and selectivity for MPC. The structure and the chemical state of titanium species in TiO2/SiO2 have been investigated by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and X-ray absorption near edge structure (XANES) of Ti K-edge. It was observed that the titanium species was highly dispersed on silica. Below 10 wt% Ti loading, the titanium phase was not observed by XRD, yet weak XRD peaks of anatase were detected at higher loadings. The Ti K-edge XANES spectra and XPS analyses indicated that Ti(IV) species in the form of a monolayer was dominant below 5 wt% Ti loadings and TiO2 of the anatase structure appeared at higher loadings. The amount of the surface Ti(IV) species measured by XPS increased with Ti loadings and was saturated above 10 wt% in the same manner as the selectivity to MPC changed with Ti loadings. This suggested that surface Ti(IV) species was directly responsible for the selective synthesis of MPC. The crystalline anatase TiO2 was also an active and selective catalyst for the transesterification, yet it contributed to decrease in activity by coking.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call