Sugar signal mediated by Cell wall invertase (CWIN) plays a central role in seed development. In higher plants, invertase inhibitors (INHs) suppress CWIN activities at a post-translational level. In Litchi chinensis cultivar ‘Nuomici’, impaired CWIN expression is associated with seed abortion. Here, the expression of LcINH1 was significantly higher in the funicle of seed-aborting cultivar ‘Nuomici’ than big-seeded cultivar ‘Heiye’. Promoter analyses found LcINH1 contained a 404 bp repeat fragment with an endosperm regulatory element of Skn-1_motif. LcINH1 and LcCWIN2/5 were located in plasma membrane. LcINH1 was able to interact with LcCWIN5, but not with LcCWIN2. In vitro enzyme activity assay demonstrated that LcINH1 could inhibit CWIN activity. Silencing LcINH1 in ‘Nuomici’ resulted in normal seed development, paralleled increased CWIN activities and glucose levels. Transcriptome analysis identified 1079 differentially expressed genes (DEGs) in LcINH1-silenced fruits. KEGG analysis showed significant enrichment of DEGs in pathways related to transporters and plant hormone signal transduction. Weighted gene co-expression network analysis indicated that the turquoise module was highly correlated with fructose content, and LcSWEET3b was closely associated with early seed development. These findings suggest that LcINH1 regulate LcCWIN5 activity at the post-translational level to alter sucrose metabolism, thereby affecting early seed development in litchi.