In this study, a composite of pond mud and lanthanum- and nano-zero valent iron-modified-biochar was investigated for its ability to adsorb methylene blue (MB) and sulfamethazine (SMZ). La-modified attapulgite and nano-zero valent iron (surface area enhanced by 43.7% via Brunauer-Emmett-Teller analysis) were successfully loaded onto the straw-sediment biochar (BC) surface. With the increase in pyrolysis temperature, the biocompatibility yield, the H, O, and N content, and the ratio of carbon elements decreased, while the pH value, surficial micropores, C element, and ash content increased. The biocarbon small molecules were gradually and tightly ordered, and the organic groups such as hydroxyl, carboxyl groups, and carbon oxygen double bonds were gradually lost or disappeared. The original Fe-BC had more phenolic hydroxyl groups forming an intermolecular hydrogen bond than others with a higher adsorption capacity possibly through the Schiff base reaction. The effect of various pH (2-9), temperature (15-35 °C), and initial concentration (1-25 mg L-1) on adsorption was investigated. pH and temperature were the main factors governing the adsorption process. The maximum adsorption capacity was observed at pH 4. The adsorption performances for MB followed the order Fe-BC > La-BC > BC, and the maximum removal rate was over 98.45% with pH = 7. The three types of BC dosages between 0.2 (6.67 g L-1) and 0.4 g showed a removal rate of 99% for MB. The adsorption capacity of Fe-BC, La-BC, and BC for MB was 2.201, 1.905, and 2.401 mg L-1 with pH = 4, while 4.79, 4.58, and 5.55 mg g-1 were observed with BC dosage at 0.025 g. For SMZ, the higher the temperature, the better the adsorption effect, and it reaches saturation at approximately 25 °C. To further evaluate the nature of adsorption, Langmuir/Freundlich/Temkin models were tested and the adsorption capacities were evaluated on the surface of the BC composite. The three modified materials were physisorbed to SMZ, while MB was chemisorbed. For MB, the adsorption performance of BC is the best < 0.2 g (6.67 g L-1) at pH 7.0 at 35 °C. The Elovich model was more suitable for MB, while the Freundlich and Temkin models could better fit the adsorption process of MB. The preparatory secondary dynamics equation and Langmuir equation were more compliant for SMZ, and the saturated adsorption capacities of straw-modified, La-BC, and Fe-BC reached 5.699, 6.088, and 5.678 mg L-1, respectively.