A novel multi-performance SHNC/SA/CaCl2 hydrogel with multi-performance was prepared via ultra-low-temperature freeze–thaw cycling and Ca2+ cross-linking for the removal of methylene blue (MB) from industrial wastewater. Various methods were used to characterize the structure and properties of hydrogel, and the internal structure of hydrogel showed a three-dimensional network with hydrogen and ester bonds. The SHNC/SA/CaCl2–15 hydrogel exhibited the highest tensile properties (elongation = 800 %), viscoelasticity (90 kPa), compressive strength (0.45 MPa), tensile strength (0.47 MPa) and ionic conductivity (4.34 S/cm). The maximum adsorption capacity of 2 g SHNC/SA/CaCl2–15 hydrogel was 608.49 mg/g at 40 °C, pH = 8 and adsorption 24 h. The adsorption process of hydrogel toward MB was more consistent with the second-order kinetic model and Langmuir isothermal adsorption model. According to the Langmuir isotherm model, the maximum monolayer adsorption capacity of SHNC/SA/CaCl2–15 hydrogel toward MB can reach 613.88 mg/g. Finally, it was found that the removal rate of SHNC/SA/CaCl2–15 hydrogel for MB was still as high as 90 % after five cycles of the adsorption–desorption test, and it could be reused. The hydrogel can be used as cheap and reusable adsorption material for cationic dyes. Our study provides a new perspective for the development of multifunctional cellulose hydrogel adsorbent materials.