Attendance is an activity to collect data to find out the number of attendances at an event or activity. In order to increase effectiveness and time efficiency is important, it is necessary to have an artificial intelligence-based presence by means of face detection. This study aims to create a face detection attendance system using modified region convolutional neural network (MR-CNN) and principal component analysis (PCA) methods. This type of research is development research by applying the concept of digital image based on face recognition. This research applies a method in deep learning, namely MR-CNN through camera media to take images and the extraction process using the PCA method to reduce image resolution. Images that include various individuals who want to be recognized are stored and then used as datasets. From the dataset, the MR-CNN model was trained with training data. Our findings are in the form of a web-based facial short-attendance system. Where are the calculation results in this system has an accuracy value of 96.1%, so it can be used well for facial identification, and can be used at SMK Bhakti Anindya.
Read full abstract