Abstract

Metabolic reprogramming (MR) and epithelial-mesenchymal transition (EMT) are crucial phenomena involved in the distant metastasis of breast cancer (BRCA). This study aims to assess the risk of distant metastasis in BRCA patients based on MR and EMT processes and investigate their underlying mechanisms. Gene sets related to EMT and MR were downloaded. MR-related genes (MRG) and EMT-related genes (ERG) were obtained. Principal Component Analysis method was used to define the EMT Potential Index (EPI) and MR Potential Index (MPI) to quantify the EMT and MR levels in each tumor tissue. A linear scoring model, the Metastasis Score, was derived using the union of MRGs and ERGs to evaluate the risk of distant metastasis/recurrence in BRCA. The Metastasis Score was then validated in multiple datasets. Additionally, our study explored the underlying mechanism of the Metastasis Score and its association with tumor immunity, focusing on HPRT1 gene expression in breast cancer tissues of transfer and untransferred groups using experimental methods. A total of 59 MRGs and 30 ERGs were identified in the present study. Stratifying the dataset based on EPI and MPI revealed significantly lower survival rates (P < .05) in the MPI_high and EPI_high groups. Kaplan-Meier analysis indicated the lowest survival rate in the EPI-high + MPI-high group. The Metastasis Score demonstrated its ability to distinguish prognoses in GSE2034, GSE17705, and TCGA-BRCA datasets. Additionally, differences in mutated genes were found between the high- and the low-Metastasis Score groups, displaying significant associations with immune cell infiltration and anti-tumor immune status. Notably, the 13 genes included in the Metastasis Score showed a strong association with prognosis and tumor immunity. Immunohistochemistry and western blot results revealed high expression of the HPRT1 gene in the transfer group. This study established the Metastasis Score as a reliable tool for evaluating the risk of distant metastasis/recurrence in BRCA patients. Additionally, we identified key genes involved in MR and EMT crosstalk, offering valuable insights into their roles in tumor immunity and other relevant aspects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call