Accurate and sensitive monitoring of the concentration change of anti-digoxigenin (Anti-Dig) antibody is of great importance for diagnosing infectious and immunological diseases. Combining a novel triplex aptamer nanoswitch and the high signal-to-noise ratio of lighting-up RNA aptamer signal amplification, a label-free and ultrasensitive fluorescent sensing approach for detecting Anti-Dig antibodies is described. The target Anti-Dig antibodies recognize and bind with the nanoswitch to open its triplex helix stem structure to release Taq DNA polymerase and short ssDNA primer simultaneously, which activates the Taq DNA polymerase to initiate downstream strand extension of ssDNA primer to yield specific dsDNA containing RNA promoter sequence. T7 RNA polymerase recognizes and binds to these promoter sequences to initiate RNA transcription reaction to produce many RNA aptamer sequences. These aptamers can recognize and bind with Malachite Green (MG) dye specifically and produce highly amplified fluorescent signal for monitoring Anti-Dig antibodies from 50 pM to 50 nM with a detection limit down to 33 pM. The method also exhibits high selectivity for Anti-Dig antibodies and can be used to discriminate trace Anti-Dig antibodies in diluted serum samples. Our method is superior to many immunization-based Anti-Dig antibody detection methods and thus holds great potential for monitoring disease progression and efficacy.
Read full abstract