This work aimed to research the efficiency of gamma irradiation and shielding characteristics on the lead oxide (PbO) doped the crosslinked polystyrene-b-polyethyleneglycol (PS-b-PEG) block copolymers and polystyrene-b-polyethyleneglycol-boron nitride (PS-b-PEG-BN) nanocomposites materials. The crosslinked PS-b-PEG block copolymers and PS-b-PEG-BN nanocomposites mixed with different percentage rates of PbO were used to research gamma-ray shielding characteristics. The synthesis of the copolymer was done by emulsion polymerization methods. The characterization and morphological analyses of irradiated samples were explored handling with the Nuclear Magnetic Resonance (NMR), Fourier Transform Infrared Spectroscopy (FTIR), Gel Permeation Chromatography (GPC), Thermogravimetric Analysis (TGA), and Scanning Electron Microscope (SEM) methods. The gamma-rays that were emitted from the source were observed with a High Purity Germanium (HPGe) detector system and examined with a GammaVision computer program. Our samples, including the different percentage rates of the PS-b-PEG (1000, 1500, 10,000), BN, and PbO, were irradiated in various gamma-ray photon energy regions (from 121.78 keV to 1408.01 keV). Then, Linear-Mass Attenuation Coefficients (LACs-MACs), Half-Tenth Value Layer (HVL), Mean Free Path (MFP), and Radiation Protection Efficiency (RPE) values of the samples were calculated. Via crosschecking the acquired data from samples with and without PbO and BN, it was observed that, if the different percentage rates by weight nano-powder of PbO and BN are added in the polymer mixture, it can be used as a convenient shielding material against gamma rays.