Specific features of the human body, such as fingerprint, iris, and face, are extensively used in biometric authentication. Conversely, the internal structure and material features of the body have not been explored extensively in biometrics. Bioacoustics technology is suitable for extracting information about the internal structure and biological and material characteristics of the human body. Herein, we report a biometric authentication method that enables multichannel bioacoustic signal acquisition with a systematic approach to study the effects of selectively distilled frequency features, increasing the number of sensing channels with respect to multiple fingers. The accuracy of identity recognition according to the number of sensing channels and the number of selectively chosen frequency features was evaluated using exhaustive combination searches and forward-feature selection. The technique was applied to test the accuracy of machine learning classification using 5,232 datasets from 54 subjects. By optimizing the scanning frequency and sensing channels, our method achieved an accuracy of 99.62%, which is comparable to existing biometric methods. Overall, the proposed biometric method not only provides an unbreakable, inviolable biometric but also can be applied anywhere in the body and can substantially broaden the use of biometrics by enabling continuous identity recognition on various body parts for biometric identity authentication.