Abstract
Personal Identification Numbers (PIN) and unlock patterns are two of the most often used smartphone authentication mechanisms. Because PINs have just four or six characters, they are subject to shoulder-surfing attacks and are not as secure as other authentication techniques. Biometric authentication methods, such as fingerprint, face, or iris, are now being studied in a variety of ways. The security of such biometric authentication is based on PIN-based authentication as a backup when the maximum defined number of authentication failures is surpassed during the authentication process. Keystroke-dynamics-based authentication has been studied to circumvent this limitation, in which users were categorized by evaluating their typing patterns as they input their PIN. A broad variety of approaches have been proposed to improve the capacity of PIN entry systems to discriminate between normal and abnormal users based on a user’s typing pattern. To improve the accuracy of user discrimination using keystroke dynamics, we propose a novel approach for improving the parameters of a Bidirectional Recurrent Neural Network (BRNN) used in classifying users’ keystrokes. The proposed approach is based on a significant modification to the Dipper Throated Optimization (DTO) algorithm by employing three search leaders to improve the exploration process of the optimization algorithm. To assess the effectiveness of the proposed approach, two datasets containing keystroke dynamics were included in the conducted experiments. In addition, we propose a feature selection algorithm for selecting the proper features that enable better user classification. The proposed algorithms are compared to other optimization methods in the literature, and the results showed the superiority of the proposed algorithms. Moreover, a statistical analysis is performed to measure the stability and significance of the proposed methods, and the results confirmed the expected findings. The best classification accuracy achieved by the proposed optimized BRNN is 99.02% and 99.32% for the two datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.