Abstract

The local binary pattern (LBP) has been widely used for extracting texture features. However, the LBP and most of its variants tend to focus on pixel units within small neighborhoods, neglecting differences in direction and relationships among different directions. To alleviate this issue, in this paper, we propose a novel local directional difference and relational descriptor (LDDRD) for texture classification. Our proposed LDDRD utilizes information from multiple pixels along the radial direction. Specifically, a directional difference pattern (DDP) is first extracted by performing binary encoding on the differences between the central pixel and multiple neighboring pixels along the radial direction. Furthermore, by taking the central pixel as a reference, we extract the directional relation pattern (DRP) by comparing binary encodings representing different directions. Finally, we fuse the above DDP and DRP to form the LDDRD feature vector. Experimental results on six texture datasets reveal that our proposed LDDRD is effective and outperforms eight representative methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.