The traditional Langmuir equation displays drawback in accurately characterizing the methane adsorption behavior in coal, due to it assuming the uniform surface of coal pores. Additionally, the decay law of gas adsorption capacity with an increasing coal reservoir temperature remains unknown. In this study, the fractal adsorption model is proposed based on the fractal dimension (Df) of coal pores and the attenuation coefficient (n) of the adsorption capacity. The principles and methods of this fractal adsorption model are deduced and summarized in detail. The results show that the pore structures of the two coal samples exhibit obvious fractal characteristics, with the values of fractal dimensions (Df) being 2.6279 and 2.93. The values of adsorption capacity attenuation coefficients (n) are estimated as −0.006 and −0.004 by the adsorption experiments with different temperatures. The proposed fractal adsorption model presents a greater theoretical significance and higher accuracy than that of the Langmuir equation. The accuracy of the fractal adsorption model with temperature effect dependence is verified, establishing a prediction method for methane adsorption capacity in deep coal reservoirs. This study can serve as a theoretical foundation for coalbed methane exploration and development, as well as provide valuable insights for unconventional natural gas exploitation.
Read full abstract