Phenology has become a good indicator for illustrating the long-term changes in the natural resources of the Yangtze River Delta. However, two issues can be observed from previous studies. On the one hand, existing time-series classification methods mainly using a single classifier, the discrimination power, can become deteriorated due to fluctuations characterizing the time series. On the other hand, previous work on the Yangtze River Delta was limited in the spatial domain (usually to 16 cities) and in the temporal domain (usually 2000–2010). To address these issues, this study attempts to analyze the spatiotemporal variation in phenology in the Yangtze River Delta (with 26 cities, enlarged by the state council in June 2016), facilitated by classifying the land cover types and extracting the phenological metrics based on Moderate Resolution Imaging Spectrometer (MODIS) Normalized Difference Vegetation Index (NDVI) time series collected from 2001 to 2015. First, ensemble learning (EL)-based classifiers are used for land cover classification, where the training samples (a total of 201,597) derived from visual interpretation based on GlobelLand30 are further screened using vertex component analysis (VCA), resulting in 600 samples for training and the remainder for validating. Then, eleven phenological metrics are extracted by TIMESAT (a package name) based on the time series, where a seasonal-trend decomposition procedure based on loess (STL-decomposition) is used to remove spikes and a Savitzky-Golay filter is used for filtering. Finally, the spatio-temporal phenology variation is analyzed by considering the classification maps and the phenological metrics. The experimental results indicate that: 1) random forest (RF) obtains the most accurate classification map (with an overall accuracy higher than 96%); 2) different land cover types illustrate the various seasonalities; 3) the Yangtze River Delta has two obvious regions, i.e., the north and the south parts, resulting from different rainfall, temperature, and ecosystem conditions; 4) the phenology variation over time is not significant in the study area; 5) the correlation between gross spring greenness (GSG) and gross primary productivity (GPP) is very high, indicating the potential use of GSG for assessing the carbon flux.
Read full abstract