Abstract
The development of information technology and process technology have been enhanced the rapid changes in high-tech products and smart manufacturing, specifications become more sophisticated. Large amount of sensors are installed to record equipment condition during the manufacturing process. In particular, the characteristics of sensor data are temporal. Most the existing approaches for time series classification are not applicable to adaptively extract the effective feature from a large number of sensor data, accurately detect the fault, and provide the assignable cause for fault diagnosis. This study aims to propose a multiple time-series convolutional neural network (MTS-CNN) model for fault detection and diagnosis in semiconductor manufacturing. This study incorporates data augmentation with sliding window to generate amounts of subsequences and thus to enhance the diversity and avoid over-fitting. The key features of equipment sensor can be learned automatically through stacked convolution-pooling layers. The importance of each sensor is also identified through the diagnostic layer in the proposed MTS-CNN. An empirical study from a wafer fabrication was conducted to validate the proposed MTS-CNN and compare the performance among the other multivariate time series classification methods. The experimental results demonstrate that the MTS-CNN can accurately detect the fault wafers with high accuracy, recall and precision, and outperforms than other existing multivariate time series classification methods. Through the output value of the diagnostic layer in MTS-CNN, we can identify the relationship between each fault and different sensors and provider valuable information to associate the excursion for fault diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.