Sympathetic preganglionic neurons (SPN) coexpress the acetylcholine (ACh)-synthesizing enzyme choline acetyltransferase and different peptides in their cell bodies, but can express them independently in separate varicosities, indicating that SPN segregate transmitters to different synapses. Consequently, there are populations of preganglionic varicosities (peptidergic and noncholinergic) that store peptides but not ACh. We studied in the cell bodies and axon processes of the rat SPN the expression and the proportional coexpression of the vesicular ACh transporter-like immunoreactivity (VAChT), a specific marker of cholinergic synaptic vesicles or ChAT-like immunoreactivity (ChAT), and the peptide methionine enkephalin-like immunoreactivity (mENK), and confirmed the presence of a population of SPN peptidergic, noncholinergic varicosities. We characterized these varicosities by exploring the occurrence of synaptophysin-like immunoreactivity (Syn), a marker of small clear vesicles, and synaptotagmin-like immunoreactivity (Syt), a preferential marker of large dense core vesicles. We found that (i) VAChT and mENK, like ChAT–mENK, were coexpressed in only 59% of the mENK-containing varicosities, although they colocalized in the SPN cell bodies; and (ii) almost 60% of the population of mENK-containing varicosities did not express Syn or Syt, and over 80% of the mENK-containing varicosities negative for VAChT also lacked Syn. These data prove that SPN segregate mENK from VAChT and ChAT, and show that most of the subset of mENKergic varicosities negative for VAChT also does not express Syn, suggesting the presence of a different vesicular pattern in these sympathetic preganglionic varicosities.