Methicillin-resistant Staphylococcus aureus (MRSA) is rapidly spreading worldwide, emerging as a leading cause of bacterial infections in healthcare and community settings. This poses serious risks to human health. The shortage of novel antibiotics and the absence of effective vaccines make MRSA particularly challenging to treat. Existing vaccine development strategies often fail to provide early protection against infections, highlighting the urgent need for solutions. Herein, we propose a novel strategy combining trained immunity with a multi-epitope subunit vaccine to combat MRSA infections. We comprehensively evaluated the trained immune phenotypes induced by β-glucan from barley and curdlan. Macrophages trained with curdlan exhibited a more balanced inflammatory response compared to β-glucan from barley, expressing higher levels of IL-1β, IFN-β, TGF-β, and CCL2 upon secondary stimulation. Furthermore, curdlan-induced trained immunity rapidly provided excellent protection against S. aureus infection in mice. RNA-sequencing analysis revealed that curdlan modulates the Wnt signaling pathway in macrophages, resolves inflammation, and promotes tissue repair. When combined with one or two doses of S. aureus multivalent epitope antigen against MRSA infection, curdlan-induced trained immunity enhanced early protection and promoted recovery. Our study demonstrates the feasibility of combining trained immunity with vaccine protection against MRSA, providing a strategy against multi-drug resistant bacteria.