Abstract

The emergence of antibiotic-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) has become a global health challenge due to the overuse of antibiotics. Natural substances including enzymes and essential oils have shown great potential as alternative treatment options. However, the combinational use of these natural agents remains challenging due to the denaturation of enzymes upon direct contact with oil. In this study, we report the design of a Pickering emulsion containing two natural antibacterial agents, lysozyme and tea tree oil, stabilized by fractal silica nanoparticles. In this design, the enzyme activity is kept and the volatility problem of tea tree oil is mitigated. Due to synergistic bacterial cell wall digestion and membrane disruption functions, potent bactericidal efficacy in vitro against drug-resistant bacteria is achieved. The therapeutic potential is further demonstrated in a wound healing model with drug-resistant bacteria infection, better than a synthetic antibiotic, Ampicillin. This study opens new avenues for the development of natural product-based antimicrobial treatments with promising application potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.