This study introduces a new in-syringe homogeneous liquid-phase microextraction method for the rapid on-site extraction of chloroanilines from water samples. Extraction was performed using a plastic syringe, eliminating the use of any electrical power source. Di-(2-ethylhexyl) phosphoric acid (DEHPA) served as the extractant. The process initially involved dissolving DEHPA in an alkaline solution to obtain a homogeneous solution. Subsequently, the sodium salt of DEHPA was precipitated by salting-out, and the resulting heterogeneous mixture was filtered using a syringe filter. The precipitate containing the analytes was then dissolved in methanol for analysis by high-performance liquid chromatography. Under optimal conditions, extraction recovery for chloroanilines ranged from 26% to 71%. Method linearity was evaluated within a concentration range of 1.0-100µg/L, resulting in coefficients of determination exceeding 0.9987 for all analytes. Method detection limits ranged from 0.28 to 0.41µg/L. Intra and inter-day precision values were below 9.5% and 10.8%, respectively. The developed method was applied to determine chloroanilines in real waters, yielding acceptable recoveries ranging from 80% to 109% for spiked tap, rain, and stream waters. Additionally, the method was successfully employed for on-site extraction of target contaminants, demonstrating no statistically significant differences compared to laboratory results.
Read full abstract