Landfill is the third highest contributor to anthropogenic methane (CH4) emissions, produced primarily by the anaerobic decomposition of organic matter by microbes. However, how various microbial metabolic processes contribute to CH4 production in domestic waste landfill remains elusive. We addressed this problem by investigating the methanogenic communities, methanogenic functional genes, KEGG modules and KEGG pathways in a county-level MSW sanitary landfill in North China Plain, China. Results showed that Methanomicrobiales, Methanobacteriales, Methanosarcinales, Micrococcales, Corynebacteriales and Bacillales were the dominant methanogens. M00357, M00346, M00567 and M00563 were the four major methane metabolic modules. The most abundant genes were ACSS, ackA and fwd with the relative abundance of 19.26–54.54%, 6.14–25.78% and 6.76–16.51%, respectively. The two essential genes of methanogenesis were detected with the relative abundance of 2.66–9.58% (mtr) and 1.63–9.14% (mcr). These findings indicated that acetotrophic and hydrogenotrophic methanogenesis were the major pathways. Methanomicrobiales, Methanosarcinales and Clostridiales were the key microbes to these pathways identified by co-occurrence network. Analysis of relative contribution of species to function further showed that Micrococcales, Corynebacteriales and Bacillales were special contributors to acetotrophic methanogenesis pathway. Redundancy analysis revealed that above functional genes and microbes were mainly controlled by NH4+ and pH. Our results can help to provide develop the fine management strategies for methane utilization and emission reduction in landfill.
Read full abstract