Abstract

Methanogenesis is a key process in carbon cycling in lacustrine ecosystems. Knowledge of the methanogenic pathway is important for creating mechanistic models as well as predicting methane emissions. Due to low concentrations of methyl substrates in freshwater lakes, the proportion of methylotrophic methanogenesis is believed to be negligible in such environments. However, the high abundance of methylotrophic methanogens previously detected in Dianchi Lake suggests that methylotrophic methanogenesis may be underestimated in eutrophic lakes, whereas their influencing factors and mechanisms are not yet clear. In this study, the effects of cyanobacteria biomass (CB) or/and nitrate nitrogen on methanogenesis, especially methylotrophic pathway, in eutrophic lakes were investigated using microcosm simulation experiments combined with chemical analysis and high-throughput sequencing techniques. The results showed that either CB or nitrate nitrogen had significant effects on methane flux, the archaeal diversity and community structure of methanogens. Functional prediction, together with the result of chemical analysis, revealed that CB could promote methylotrophic methanogenesis by providing methyl organic substrates, while nitrate nitrogen increased the relative abundance of obligate methylotrophic methanogens by competitively inhibiting the other two methanogenic pathways. In eutrophic lake where both CB and nitrate present at a high concentration, methylotrophic methanogenesis could play a much more important role than previously believed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call