Prediction of high-Tc superconductivity in hole-doped LixBC two decades ago has brought about an extensive effort to synthesize new materials with honeycomb B-C layers, but the thermodynamic stability of Li-B-C compounds remains largely unexplored. In this study, we use density functional theory to characterize well-established and recently reported Li-B-C phases. Our calculation of the Li chemical potential in LixBC helps estimate the (T,P) conditions required for delithiation of the LiBC parent material, while examination of B-C phases helps rationalize the observation of metastable BC3 polymorphs with honeycomb and diamond-like morphologies. At the same time, we demonstrate that recently reported BC3, LiBC3, and Li2B2C phases with new crystal structures are both dynamically and thermodynamically unstable. With a combination of evolutionary optimization and rational design, we identify considerably more natural and favorable Li2B2C configurations that, nevertheless, remain above the thermodynamic stability threshold.
Read full abstract