Abstract

A new polymorph of the drug active pharmaceutical ingredient piracetam (Form VI) has been discovered and characterized by X-ray powder diffraction (PXRD), solid-state Raman, attenuated total reflectance infrared spectroscopy, and differential scanning calorimetry. The PXRD diffractogram of Form VI shows a distinct peak at 24.2° (2θ) that distinguishes it from the previously known polymorphs and solvates. Form VI is metastable with respect to the previously known polymorphs Form II and Form III; in ethanol solution at 288 K, Form VI transforms into Form II within 15 min, while in isopropanol solution Form VI is kinetically stable for at least 6 h. A total of 1200 crystal nucleation induction time experiments of piracetam in ethanol and isopropanol solutions have been conducted, in sets of 40–80 repeat experiments carried out at different temperatures and solute concentrations. Each solution nucleated as a single polymorph, and each set of repeat experiments resulted in different proportions of Form II, Form III, and Form VI, with Form VI dominating at low nucleation temperatures and Form II at higher nucleation temperatures. The induction time data for Form VI at 288 K have been evaluated within the framework of the classical nucleation theory. At equal driving force, nucleation of Form VI is less obstructed in ethanol than in isopropanol, as captured by a lower interfacial energy and higher pre-exponential factor in ethanol. The proportion of Form VI obtained at a comparable driving force increases in the order ethanol < isopropanol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call