Using a combination of UV-visible spectroscopy and electronic structure calculations, we have characterized the electronic structures and optical properties of AWO4 (A = Mn, Co, Ni, Cu, Zn, or Mg) tungstates with the wolframite structure. In MgWO4 and ZnWO4, the lowest energy optical excitation is a ligand to metal charge transfer (LMCT) excitation from oxygen 2p nonbonding orbitals to antibonding W 5d orbitals. The energy of the LMCT transition in these two compounds is 3.95 eV for ZnWO4 and 4.06 eV for MgWO4. The charge transfer energies observed for the other compounds are significantly smaller, falling in the visible region of the spectrum and ranging from 2.3 to 3.0 eV. In these compounds, the partially occupied 3d orbitals of the A(2+) ion act as the HOMO, rather than the O 2p orbitals. The lowest energy charge transfer excitation now becomes a metal-to-metal charge transfer (MMCT) excitation, where an electron is transferred from the occupied 3d orbitals of the A(2+) ion to unoccupied antibonding W 5d states. The MMCT value for CuWO4 of 2.31 eV is the lowest in this series due to distortions of the crystal structure driven by the d(9) configuration of the Cu(2+) ion that lower the crystal symmetry to triclinic. The results of this study have important implications for the application of these and related materials as photocatalysts, photoanodes, pigments, and phosphors.
Read full abstract