Systematic investigation of the reactions of the system AlCl3·6H2O/pyridine-2,4,6-tricarboxylic acid (H3PTC)/pyridine in water yielded two new compounds, both containing the dimeric {AlPTC(μ-OH)(H2O)}22– unit. With long reaction times, the framework compound [Al(μ-OH){AlPTC(μ-OH)(H2O)}2]·2H2O (CAU-16, compound 1) is obtained, the first example of a framework compound with a metal–organic cluster linker, and bearing the MIL-53 network. Although the compound does not breathe, as other MIL-53 compounds do, it has a maximum uptake of CO2 of 1.76(2) mmol g–1 at 196 K. With shorter reaction times, the molecular compound {Al(HPTC)(μ-OH)(H2O)}2 (2) was prepared, leading to the proposal of a crystallization scheme for the Al3+-pyridine-2,4,6,-tricarboxylic acid system. To determine whether further framework compounds bearing hybrid metal cluster linkers could be prepared, systematic high-throughput investigations of pyridine-2,4,6-tricarboxylic acid in water with Ga3+ and In3+ were undertaken. These yielded two chain-type compounds, GaPTC(H2O)2 (3) and InPTC(H2O)2 (4), with different coordination chemistries. Optimized syntheses for compounds 1, 2, and 4 are reported.
Read full abstract