A series of Ni/Al2O3 catalysts with variable Ni loading (2–20 wt%) were prepared by aqueous wet impregnation of a nitrate precursor using native cyclodextrins as metal complex hosts. The impact of β-CD was carefully characterized at different stages of the preparation by a set of complementary techniques including TG-MS analysis, mass spectrometry, X-ray diffraction, temperature-programmed reduction, CO pulse chemisorption, X-ray photoelectron spectroscopy and electron microscopy. It was found that the use of cyclodextrins afforded a much higher Ni dispersion and narrower distribution of Ni particle sizes, as well as a much higher availability of reduced surface Ni species. As a result, the cyclodextrin-assisted catalysts exhibited enhanced catalytic properties in the direct amination of benzyl alcohol with aniline and 1-octanol with ammonia, both operated via the hydrogen borrowing mechanism. Furthermore, the use of cyclodextrins allowed a significant improvement of the robustness of the catalysts by mitigating the nickel leaching during reaction.
Read full abstract