Coumarins represent a diverse class of natural compounds whose importance in pharmaceutical and agri-food sectors has motivated multiple novel synthetic derivatives with broad applicability. The phenolic moiety in 4-hydroxycoumarins underscores their potential to modulate the equilibrium between free radicals and antioxidant species within biological systems. The aim of this work was to assess the antioxidant activity of 18 4-hydroxycoumarin coumarin derivatives, six of which are commercially available and the other 12 were synthesized and chemically characterized and described herein. The 4-hydroxycoumarins were prepared by a two steps synthetic strategy with satisfactory yields. Their antioxidant potential was evaluated through three in vitro methods, two free radical-scavenging assays (DPPH• and ABTS•+) and a metal chelating activity assay. Six synthetic coumarins (4a, 4g, 4h, 4i, 4k, 4l) had a scavenging capacity of DPPH• higher than butylated hydroxytoluene (BHT) (IC50=0.58mmol/L) and compound 4a (4-hydroxy-6-methoxy-2H-chromen-2-one) with an IC50=0.05mmol/L outperformed both BHT and ascorbic acid (IC50=0.06mmol/L). Nine hydroxycoumarins had a scavenging capacity against ABTS•+ greater (C3, 4a, 4c) or comparable (C1, C2, C4, C6, 4g, 4l) to Trolox (IC50=34.34µmol/L). Meanwhile, the set had a modest ferrous chelation capacity, but most of them (C2, C5, C6, 4a, 4b, 4h, 4i, 4j, 4k, 4l) reached up to more than 20% chelating ability percentage. Collectively, this research work provides valuable structural insights that may determine the scavenging and metal chelating activity of 4-hydroxycoumarins. Notably, substitutions at the C6 position appeared to enhance scavenging potential, while the introduction of electron-withdrawing groups showed promise in augmenting chelation efficiency.
Read full abstract