Abstract
Microbial biotechnology plays a crucial role in improving industrial processes, particularly in the production of compounds with diverse applications. In this study, we used bioinformatic approaches to analyze the genomic architecture of Streptomyces albidoflavus MGMM6 and identify genes involved in various metabolic pathways that have significant biotechnological potential. Genome mining revealed that MGMM6 consists of a linear chromosome of 6,932,303 bp, with a high G+C content of 73.5%, lacking any plasmid contigs. Among the annotated genes, several are predicted to encode enzymes such as dye peroxidase, aromatic ring-opening dioxygenase, multicopper oxidase, cytochrome P450 monooxygenase, and aromatic ring hydroxylating dioxygenases which are responsible for the biodegradation of numerous endogenous and xenobiotic pollutants. In addition, we identified genes associated with heavy metal resistance, such as arsenic, cadmium, mercury, chromium, tellurium, antimony, and bismuth, suggesting the potential of MGMM6 for environmental remediation purposes. The analysis of secondary metabolites revealed the presence of multiple biosynthesis gene clusters responsible for producing compounds with potent antimicrobial and metal-chelating activities. Furthermore, laboratory tests conducted under controlled conditions demonstrated the effectiveness of MGMM6 in inhibiting phytopathogenic microbes, decolorizing and degrading aromatic triphenylmethane dyes, particularly Blue Brilliant G250, from wastewater by up to 98 ± 0.15%. Overall, the results of our study highlight the promising biotechnological potential of S. albidoflavus MGMM6.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.