In rural China, many constructed wetlands (CWs) have been developed to treat rural wastewater sustainably. However, due to the scarce information on those rural CWs, it is difficult to analyze the biological contaminants within those systems, such as antibiotic resistance genes (ARGs) and pathogens. Based on the data collected from two pilot-scale, one-year-observed CWs, for the first time, this study explored the accumulation of ARGs and pathogens using the metagenomic sequencing approach and SourceTracker analysis under different hydraulic loading rates. The Shannon index of ARGs in the effluent surpassed the level found in the influent. The DESeq2 analysis showed that up to 21.49% of the total pathogen species had increased relative abundance in the effluent compared with the influent. By combining the contribution of substrate and rhizosphere, the CW became a more influencing factor for ARGs and pathogens contamination than the influent. The network analysis revealed a critical but latent fact that the development of antibiotic-resistant pathogens is highly likely to be triggered by the co-occurrence of ARGs and pathogens. Collectively, from the aspect of biological risk, our study showed that CWs alone might not be an ideal solution for improving wastewater treatment in rural China.