Metabotropic glutamate receptor 1 (mGluR1) blockade has been shown to decrease impulsive choice, as measured in delay discounting. However, several variables are known to influence an animal’s discounting, including sensitivity to delayed reinforcement and sensitivity to reinforcer magnitude. The goal of this experiment was to determine the effects of mGluR1, as well as mGluR5, antagonism on these parameters. Forty Sprague Dawley rats were trained in delay discounting, in which consistently choosing a small, immediate reward reflects impulsive choice. For half of the rats, the delay to the large reinforcer increased across blocks of trials, whereas the delay decreased across the session for half of the rats. Following training, half of the rats received injections of the mGluR1 antagonist JNJ 16259685 (JNJ; 0, 0.1, 0.3, or 1.0mg/kg; i.p), and half received injections of the mGluR5 antagonist MPEP (0, 1.0, 3.0, or 10.0mg/kg; i.p.). Administration of JNJ increased sensitivity to delayed reinforcement (i.e., promoted impulsive choice), regardless of which schedule was used. However, the order in which delays were presented modulated the effects of JNJ on sensitivity to reinforcer magnitude. Specifically, JNJ decreased sensitivity to reinforcer magnitude in rats trained on the descending schedule only. MPEP did not alter sensitivity to reinforcer magnitude or sensitivity to delayed reinforcement. These results show that mGluR1 is an important mediator of impulsive choice, and they provide further evidence that delay order presentation is an important variable that influences drug effects in delay discounting.
Read full abstract