Abstract

Endocannabinoids (eCBs) are cannabis-like substances produced in the brain where their primary function is to regulate synaptic transmission by inhibiting neurotransmitter release in a retrograde fashion. We have recently demonstrated a novel mechanism regulating GABAergic transmission from neurons in the Substantia Nigra pars reticulata (SNr) to dopaminergic neurons in the Substantia Nigra pars compacta (SNc) mediated by eCBs. Production of eCBs was initiated by spillover of glutamate, yet the source of the glutamate was not determined (Freestone et al., 2014; Neuropharmacology 79 p467). The present study aimed at elucidating the potential role of glutamatergic terminals arising from neurons in the Subthalamic nucleus (STN) in driving the eCB-mediated modulation of this inhibitory transmission. GABAergic IPSCs or IPSPs evoked in SNc neurons by electrical stimuli delivered to the SNr region were transiently inhibited by electrical or pharmacological (U-tube application of muscarinic agonist carbachol [100µM]) stimulation of the STN (to 74±5% and 69±4% respectively). In both stimulation protocols, the attenuation of GABAergic transmission was abolished by cannabinoid receptor 1 antagonist rimonabant (3µM), and reduced by group 1 metabotropic glutamate receptor antagonist CPCCOEt (100µM), consistent with a glutamate-initiated and eCB-mediated mechanism. The carbachol-induced attenuation of GABAergic transmission was abolished by M3 muscarinic receptor antagonist 4-DAMP (10µM), confirming a specific activation of STN neurons. These results demonstrate that glutamatergic projection from the STN to dopaminergic SNc neurons underlies an eCB-mediated inhibition of GABAergic input to these neurons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call