Renin, encoded by REN, is an essential enzyme in the renin-angiotensin aldosterone system (RAAS) which is responsible for the maintenance of blood pressure homeostasis. Transcriptional regulation of REN has been linked to enhancer-promoter crosstalk, cAMP response element-binding protein (CREB), the active metabolite of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), and a less well-characterized intronic silencer element. We hypothesized that in addition to these, differential DNA methylation is linked to REN expression and influenced by 1,25(OH)2D3. REN expressing cells (HEK293) were used to elucidate the effect of 1,25(OH)2D3 on REN methylation and expression as quantified by methylation-sensitive qPCR and RT-qPCR, respectively. In vitro 1,25(OH)2D3 supplementation (10nM) induced significant hypomethylation of the REN silencer (P<0.050), which was linked to a significant reduction in REN expression (P<0.010) but had no effect on enhancer methylation. In addition, 1,25(OH)2D3 increased VDR (P<0.05), as well as TET1 (P<0.05) expression, suggesting an association between 1,25(OH)2D3 and DNA methylation. Thus, it appears that the silencer element, which is controlled by DNA methylation and influenced by 1,25(OH)2D3, plays an essential role in regulating REN expression.