L-theanine, a unique non-protein amino acid predominantly found in tea plants (Camellia sinensis), plays a pivotal role in plant responses to abiotic stress and significantly influences tea quality. In this review, the metabolism and transport mechanisms of L-theanine are comprehensively discussed, highlighting its spatial distribution in tea plants, where it is most abundant in young leaves and less so in roots, stems, and older leaves. The biosynthesis of L-theanine occurs through the enzymatic conversion of glutamate and ethylamine, catalyzed by theanine synthase, primarily in the roots, from where it is transported to aerial parts of the plant for further catabolism. Environmental factors such as temperature, light, drought, elevated CO2, nutrient unavailability, and heavy metals significantly affect theanine biosynthesis and hydrolysis, with plant hormones and transcription factors playing crucial regulatory roles. Furthermore, it has been demonstrated that applying L-theanine exogenously improves other crops’ resistance to a range of abiotic stresses, suggesting its potential utility in improving crop resilience amid climate change. This review aims to elucidate the physiological mechanisms and biological functions of L-theanine metabolism under stress conditions, providing a theoretical foundation for enhancing tea quality and stress resistance in tea cultivation.
Read full abstract